Modelling 1 SUMMER TERM 2020

LECTURE 8 (Linear) Information Loss

Michael Wand · Institut für Informatik · Michael.Wand@uni-mainz.de

Information Loss in Linear Mappings

Linear Maps

A function

• $f: V \rightarrow W$ between vector spaces V, W

is linear if and only if:

- $\forall \mathbf{v}_1, \mathbf{v}_2 \in V$: $f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$
- $\forall \mathbf{v} \in V, \lambda \in \mathbb{R}: f(\lambda \mathbf{v}) = \lambda f(\mathbf{v})$

Matrix Product

All operations are matrix-matrix products:

Matrix-Vector product:

$$f(\mathbf{x}) = \begin{pmatrix} x_1 + x_2 \\ 2x_1 + 2x_2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \cdot \mathbf{x}$$

- After f, we can recover $b_1 + b_2$
 - Sum of inputs
- We do not know $b_1 b_2$ anymore
 - Difference of inputs

$$f(\mathbf{x}) = \begin{pmatrix} x_1 + x_2 \\ 2x_1 + 2x_2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \cdot \mathbf{x}$$

- After f, we can recover $b_1 + b_2$
 - Sum of inputs
- We do not know $b_1 b_2$ anymore
 - Difference of inputs
 - Anything along that line, i.e. $(\lambda, -\lambda), \lambda \in \mathbb{R}$

- After f, we can recover $b_1 + b_3$ and $b_2 + b_3$
- We do not know $b_1 + b_2 b_3$ anymore
 - Anything along that line, i.e. $(\lambda, \lambda, -\lambda), \lambda \in \mathbb{R}$

- After f, we can recover $b_1 + b_3$ and $b_2 + b_3$
- We do not know $b_2 b_3$ anymore

Orthogonal Comlement

Definition

- **Given:** Subspace $V_s \subseteq V$
- Orthogonal complement

$$V_{S}^{\perp} \coloneqq \{\mathbf{v} \in V | \forall \mathbf{w} \in V_{S} : \langle \mathbf{v}, \mathbf{w} \rangle = 0\}$$

Intuition

- Set of all vectors orthogonal to V_s
- Zero projection onto any $\mathbf{w} \in V_s$

Theorem

$$V_s \subset V \Rightarrow V = \operatorname{span}\{V_s, V_s^{\perp}\} \ [\coloneqq V_s \oplus V_s^{\perp}]$$

In general

Consider mapping

$$f: V_1 \to V_2$$

Subspaces of V_1

• Kernel: Subspace that is lost

 $\ker \mathbf{f} \coloneqq \{\mathbf{x} \in V_1 | \mathbf{f}(\mathbf{x}) = 0\}$

Orthogonal complement of kernel

 $[\ker \mathbf{f}]^{\perp} = \{\mathbf{v} \in V_1 | \forall \mathbf{w} \in \ker \mathbf{f} : \langle \mathbf{v}, \mathbf{w} \rangle = 0\}$

In this space, *f* is invertible

In general

Consider mapping

$$f: V_1 \to V_2$$

In the target domain

 $\operatorname{im} \boldsymbol{f} \coloneqq \{ \mathbf{y} \in V_2 | \exists \mathbf{x} \in V_1 : \boldsymbol{f}(\mathbf{x}) = \mathbf{y} \}$

- Subspace of V_2
- Same dimension as kernel complement

 $\dim([\ker f]^{\perp}) = \dim(\operatorname{im} f)$

In general

Consider mapping

• Rank is the dimension of the mapped space $rank(f) \coloneqq dim(im f)$

 $= \dim(\operatorname{span}(V_1 \setminus \ker f))$

• Source space V_1 is split:

- dim im(f) = dimensions "preserved" by f
- dim ker (f) = dimensions "removed" by f
- Sums up:

 $\dim(V_1) = \dim(\operatorname{im} f) + \dim(\operatorname{ker} f)$

Structural Insight

Mapping Subspaces to Subspaces

- Invertible map from $[\ker f]^{\perp} \rightarrow \operatorname{im} f$
- Not covered
 - "Source" information lost: coordinates within ker f
 - Unreachable "targets": vectors within $[\operatorname{im} f]^{\perp}$

Structural Insight

Dimensions add up

- dim $[\ker f]^{\perp}$ = dim im f
- dim V_1 = dim ker f + dim [ker f]^{\perp}
- dim V_2 = dim im f + dim [im f]^{\perp}

In practice?

In practice

- It always never works:
 - Most matrices have noise (measurement, numerics)
 - Any practical mapping has "full rank"
 - Inverting matrices is not always stable
 - Even full-rank matrices might delete information
 - Need to understand this better!

We will discuss this soon

- Tools:
 - Eigenvalues
 - Singular value decomposition (SVD)

Linear Systems of Equations Inverting Linear Maps

Situation

• W

 $= \mathbf{V}_n$

Linear Systems of Equations

Problem: Invert an affine map

- Given: $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, i.e, $\mathbf{A} \cdot \mathbf{x} \mathbf{b} = \mathbf{0}$
 - We know A, b
 - Looking for x
- Compute $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$

Solution

- Set of solutions: *affine subspace* of \mathbb{R}^n (or \emptyset)
 - Point, line, plane, hyperplane...
- Innumerous algorithms

Linear Systems of Equations

Structure

Linear System (A: $V_1 \rightarrow V_2$):

- $\mathbf{A}\mathbf{x} = \mathbf{0}$
 - Solution space = ker A
- **Ax** = **b**
 - Might or might not have a solution
 - Solution if and only if $\mathbf{b} \in \operatorname{im} \mathbf{A}$
- Set of all solutions:
 - One \mathbf{y} with $\mathbf{A}\mathbf{y} = \mathbf{b}$
 - Add any solution of $\mathbf{A}\mathbf{x} = \mathbf{0}$
 - Solution set: $\mathbf{y} + \ker \mathbf{A}$

Solvers for Linear Systems

Solving linear systems of equations

- **Baseline:** Gaussian elimination $O(n^3)$ operations for $n \times n$ matrices
- We can do better, in particular for special cases:
 - Band matrices: constant bandwidth
 - Sparse matrices: constant number of non-zero entries per row
 - Store only non-zero entries

Solvers for Linear Systems

Algorithms: linear systems of *n* equations

- Band matrices, O(1) bandwidth:
 - Modified O(n) elimination algorithm.
- Iterative Gauss-Seidel solver
 - converges for diagonally dominant matrices
 - Typically: O(n) iterations, each costs O(n) for a sparse matrix.
- Conjugate Gradient solver
 - Only symmetric, positive definite matrices
 - Guaranteed: O(n) iterations
 - Typically good solution after O(n) iterations.

See: J. R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, 1994.