Modelling 1 SUMMER TERM 2020

LECTURE 8 (Linear) Information Loss

Information Loss in Linear Mappings

Linear Maps

A function

 $f: V \to W$ between vector spaces V, W

is linear if and only if:

- $\mathbf{v}_1 \forall \mathbf{v}_2 \in V:$ $f(\mathbf{v}_1 + \mathbf{v}_2) = f(\mathbf{v}_1) + f(\mathbf{v}_2)$
- \forall **v** \in *V*, $\lambda \in \mathbb{R}$: $f(\lambda \mathbf{v}) = \lambda f(\mathbf{v})$

Matrix Product

All operations are matrix-matrix products:

Matrix-Vector product:

$$
f(\mathbf{x}) = \begin{pmatrix} x_1 + x_2 \\ 2x_1 + 2x_2 \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \cdot \mathbf{x}
$$

- After f, we can recover $b_1 + b_2$
	- Sum of inputs
- We do not know $b_1 b_2$ anymore
	- **Difference of inputs**

$$
f(\mathbf{x}) = \begin{pmatrix} x_1 + x_2 \\ 2x_1 + 2x_2 \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \cdot \mathbf{x}
$$

- After f, we can recover $b_1 + b_2$
	- Sum of inputs
- We do not know $b_1 b_2$ anymore
	- Difference of inputs
	- Anything along that line, i.e. $(\lambda, -\lambda)$, $\lambda \in \mathbb{R}$

- After f, we can recover $b_1 + b_3$ and $b_2 + b_3$
- We do not know $b_1 + b_2 b_3$ anymore
	- Anything along that line, i.e. $(\lambda, \lambda, -\lambda)$, $\lambda \in \mathbb{R}$

- After f, we can recover $b_1 + b_3$ and $b_2 + b_3$
- We do not know $b_2 b_3$ anymore

Orthogonal Comlement

Definition

- Given: Subspace $V_s \subseteq V$
- Orthogonal complement

$$
V_S^{\perp} := \{ \mathbf{v} \in V | \forall \mathbf{w} \in V_S : \langle \mathbf{v}, \mathbf{w} \rangle = 0 \}
$$

Intuition

- Set of all vectors orthogonal to V_s
- Zero projection onto any $w \in V_s$

Theorem

$$
V_s \subset V \Rightarrow V = \text{span}\{V_s, V_s^{\perp}\} \quad [:= V_s \oplus V_s^{\perp}]
$$

In general

Consider mapping

$$
f: V_1 \to V_2
$$

Subspaces of V_1

Kernel: Subspace that is lost

 $ker f := {x \in V_1 | f(x) = 0}$

Orthogonal complement of kernel

 $\ker f]^\perp = \{ \mathbf{v} \in V_1 | \forall \mathbf{w} \in \ker f : \langle \mathbf{v}, \mathbf{w} \rangle = 0$

In this space, f is invertible

In general

Consider mapping

$$
f: V_1 \to V_2
$$

In the target domain

 $\text{im } f \coloneqq \{ \mathbf{v} \in V_2 \mid \exists \mathbf{x} \in V_1 : f(\mathbf{x}) = \mathbf{v} \}$

- Subspace of V_2
- Same dimension as kernel complement

 $\dim([\ker f]^\perp) = \dim(\operatorname{im} f)$

In general

Consider mapping

• Rank is the dimension of the mapped space rank $(f) \coloneqq \dim(\text{im } f)$

 $=$ dim(span($V_1\$ ker f))

Source space V_1 is split:

- dim $\text{im}(f)$ = dimensions "preserved" by f
- dim ker (f) = dimensions "removed" by f
- **Sums up:**

 $\dim(V_1) = \dim(\text{im } f) + \dim(\text{ker } f)$

Structural Insight

Mapping Subspaces to Subspaces

- Invertible map from $[\ker f]^\perp \to \operatorname{im} f$
- Not covered
	- **Source**" information lost: coordinates within ker f
	- Unreachable "targets": vectors within $[\text{im } f]^\perp$

Structural Insight

Dimensions add up

- \bullet dim [ker f]^{\perp} = dim im f
- \blacksquare dim $V_1 = \dim \ker f + \dim [\ker f]^{\perp}$
- \blacksquare dim $V_2 = \dim \mathrm{im } f + \dim [\mathrm{im } f]^\perp$

In practice?

In practice

- **It always never works:**
	- Most matrices have noise (measurement, numerics)
		- Any practical mapping has "full rank"
	- **Inverting matrices is not always stable**
		- Even full-rank matrices might delete information
	- Need to understand this better!

We will discuss this soon

- **Tools:**
	- **Eigenvalues**
	- Singular value decomposition (SVD)

Linear Systems of Equations Inverting Linear Maps

Situation

 $\lambda_n = \mathbf{v}_n \cdot \mathbf{w}$

Linear Systems of Equations

Problem: Invert an affine map

- Given: $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$, i.e, $\mathbf{A} \cdot \mathbf{x} \mathbf{b} = \mathbf{0}$
	- \blacksquare We know \boldsymbol{A} , \boldsymbol{b}
	- **Looking for** \mathbf{x}
- Compute $\mathbf{x} = \mathbf{A}^{-1} \cdot \mathbf{b}$

Solution

- Set of solutions: *affine subspace* of \mathbb{R}^n (or Ø)
	- Point, line, plane, hyperplane...
- **Innumerous algorithms**

Linear Systems of Equations

Structure

Linear System $(A: V_1 \rightarrow V_2)$:

- $Ax = 0$
	- Solution space = $ker A$
- $Ax = b$
	- Might or might not have a solution
	- Solution if and only if $\mathbf{b} \in \text{im } A$
- Set of all solutions:
	- One **y** with $Ay = b$
	- Add any solution of $Ax = 0$
	- Solution set: $y + \ker A$

Solvers for Linear Systems

Solving linear systems of equations

- **Baseline:** Gaussian elimination O(*n* 3) operations for *nn* matrices
- We can do better, in particular for special cases:
	- **Band matrices:** constant bandwidth
	- **Sparse matrices:** constant number of non-zero entries per row
		- Store only non-zero entries

Solvers for Linear Systems

Algorithms: linear systems of *n* equations

- Band matrices, O(1) bandwidth:
	- Modified O(n) elimination algorithm.
- **In Iterative Gauss-Seidel solver**
	- converges for diagonally dominant matrices
	- Typically: $O(n)$ iterations, each costs $O(n)$ for a sparse matrix.
- Conjugate Gradient solver
	- Only symmetric, positive definite matrices
	- Guaranteed: O(n) iterations
	- Typically good solution after $Q(n)$ iterations.

See: J. R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, 1994.