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Information Loss
in Linear Mappings 



Linear Maps

A function

 f : 𝑉𝑊 between vector spaces 𝑉, 𝑊

is linear if and only if:

 v1,v2V: f (v1 + v2) = f (v1) + f (v2)

 vV, ℝ: f (v) =  f (v)



Matrix Product

All operations are matrix-matrix products:

 Matrix-Vector product:

 𝑓 𝐱 = 𝐌𝑓 ⋅ 𝐱
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Not invertible

Information flow:

 After 𝑓, we can recover 𝑏1 + 𝑏2
 Sum of inputs

 We do not know 𝑏1 − 𝑏2 anymore

 Difference of inputs

𝐛2

𝐛1
𝑓

𝑓 𝐱 =
𝑥1 + 𝑥2
2𝑥1 + 2𝑥2

=
1 1
2 2

⋅ 𝐱
𝑓 𝐛1

𝑓 𝐛2

𝟎𝟎

2D 1D



Not invertible

Information flow:

 After 𝑓, we can recover 𝑏1 + 𝑏2
 Sum of inputs

 We do not know 𝑏1 − 𝑏2 anymore

 Difference of inputs

 Anything along that line, i.e. 𝜆, −𝜆 , 𝜆 ∈ ℝ

𝐛2

𝐛1

𝑓 𝐱 =
𝑥1 + 𝑥2
2𝑥1 + 2𝑥2

=
1 1
2 2

⋅ 𝐱
𝑓 𝐛1

𝑓 𝐛2

𝟎𝟎

2D 1D

𝑓−1 ቚwhere
possible



Not invertible

Information flow:

 After 𝑓, we can recover 𝑏1 + 𝑏3 and 𝑏2 + 𝑏3

 We do not know b1 + 𝑏2 − 𝑏3 anymore

 Anything along that line, i.e. 𝜆, 𝜆, −𝜆 , 𝜆 ∈ ℝ

𝐛2

𝐛1

𝐛3
𝑓

𝑓 𝐱 =
𝑥1 + 𝑥3
𝑥2 + 𝑥3

0

=
1 0 1
0 1 1
0 0 0

⋅ 𝐱



Not invertible

Information flow:

 After 𝑓, we can recover 𝑏1 + 𝑏3 and 𝑏2 + 𝑏3

 We do not know 𝑏2 − 𝑏3 anymore

𝐛2

𝐛1

𝐛3 𝑓−1 ቚwhere
possible

𝑓 𝐱 =
𝑥1 + 𝑥3
𝑥2 + 𝑥3

0

=
1 0 1
0 1 1
0 0 0

⋅ 𝐱



Orthogonal Comlement

Definition

 Given: Subspace 𝑉𝑠 ⊆ 𝑉

 Orthogonal complement

𝑉𝑆
⊥ ≔ {𝐯 ∈ 𝑉|∀𝐰 ∈ 𝑉𝑠: 𝐯,𝐰 = 0}

Intuition

 Set of all vectors orthogonal to 𝑉𝑠

 Zero projection onto any 𝐰 ∈ 𝑉𝑠

Theorem
𝑉𝑠 ⊂ 𝑉 ⇒ 𝑉 = span 𝑉𝑠, 𝑉𝑠

⊥ [≔ 𝑉𝑠 ⊕ 𝑉𝑠
⊥]

𝑉𝑠𝑉𝑠
⊥

𝑉



In general

Consider mapping

𝑓: 𝑉1 → 𝑉2

Subspaces of 𝑉1
 Kernel: Subspace that is lost

ker 𝑓 ≔ 𝐱 ∈ 𝑉1 𝑓 𝐱 = 0

 Orthogonal  complement of kernel

ker 𝑓 ⊥ = 𝐯 ∈ 𝑉1|∀𝐰 ∈ ker𝑓: 𝐯,𝐰 = 0

 In this space, 𝑓 is invertible

ker 𝑓 ⊥

𝟎

ker 𝑓

𝑓 𝐛1

𝑓 𝐛2

𝟎

1D

𝐛1

𝐛2



In general

Consider mapping

𝑓: 𝑉1 → 𝑉2

In the target domain

im𝑓 ≔ 𝐲 ∈ 𝑉2 ∃𝐱 ∈ 𝑉1: 𝑓 𝐱 = 𝐲

 Subspace of 𝑉2

 Same dimension as kernel complement

dim ker 𝑓 ⊥ = dim im𝑓



In general

Consider mapping

 Rank is the dimension of the mapped space

rank 𝑓 ≔ dim im 𝑓

= dim span 𝑉1\ker 𝑓

 Source space 𝑉1 is split: 

 dim im 𝑓 = dimensions “preserved” by f

 dim ker 𝑓 = dimensions “removed” by f

 Sums up:

dim 𝑉1 = dim im 𝑓 + dim ker 𝑓



Structural Insight

Mapping Subspaces to Subspaces

 Invertible map from ker 𝑓 ⊥ → im 𝑓

 Not covered

 “Source” information lost: coordinates within ker 𝑓

 Unreachable ”targets”: vectors within im 𝑓 ⊥

𝐛2

𝐛1

𝐛3 𝑓(𝐛3)

𝑓(𝐛2)

𝑓(𝐛1)
𝑉1 𝑉2

𝑓: 𝑉1 → 𝑉2



Structural Insight

Dimensions add up

 dim ker 𝑓 ⊥ = dim im 𝑓

 dim𝑉1 = dimker 𝑓 + dim ker 𝑓 ⊥

 dim𝑉2 = dim im𝑓 + dim im𝑓 ⊥

𝐛2

𝐛1

𝐛3 𝑓(𝐛3)

𝑓(𝐛2)

𝑓(𝐛1)
𝑉1 𝑉2

𝑓: 𝑉1 → 𝑉2



In practice?

In practice

 It always never works:

 Most matrices have noise (measurement, numerics)

– Any practical mapping has “full rank”

 Inverting matrices is not always stable

– Even full-rank matrices might delete information

 Need to understand this better!

We will discuss this soon

 Tools:

 Eigenvalues

 Singular value decomposition (SVD)



Linear Systems of Equations

Inverting Linear Maps



Situation

Linear System

𝜆1 ⋅ 𝐯1 +⋯+ 𝜆𝑛 ⋅ 𝐯𝑛 = 𝐰

𝐯2

𝐯1

𝐰
𝜆1

𝜆2

Direct Computation

𝜆1 = 𝐯1 ⋅ 𝐰
⋮

𝜆𝑛 = 𝐯𝑛 ⋅ 𝐰

General Case Orthogonal

𝜆2

𝜆1

𝐯2

𝐯1

𝐰



Linear Systems of Equations

Problem: Invert an affine map

 Given: 𝐀 ⋅ 𝐱 = 𝐛,   i.e,   𝐀 ⋅ 𝐱 − 𝐛 =0

 We know 𝐀, 𝐛

 Looking for 𝐱

 Compute 𝐱 = 𝐀−𝟏 ⋅ 𝐛

Solution

 Set of solutions: affine subspace of ℝ𝑛 (or ∅)

 Point, line, plane, hyperplane...

 Innumerous algorithms



Linear Systems of Equations

{𝐱 | 𝐀𝐱 = 𝟎} – hyperplane
through the origin

0

ker 𝐀

0

ker 𝐀

𝒚 with 𝐀𝐲 = 𝐛

{𝐱 | 𝐀𝐱 = 𝐛} – hyperplane
through any point

“Homogeneous” system

“Inhomogeneous” system



Structure

Linear System (𝐀:𝑉1 → 𝑉2):

 𝐀𝐱 = 𝟎
 Solution space = ker𝐀

 𝐀𝐱 = 𝐛
 Might or might not have a solution

 Solution if and only if 𝐛 ∈ im 𝐀

 Set of all solutions:

 One 𝐲 with 𝐀𝐲 = 𝐛

 Add any solution of 𝐀𝐱 = 𝟎

 Solution set: 𝐲 + ker 𝐀

0
ker 𝐀

target space 𝑉2

0 im 𝐀

b - solution

𝐛′ – no solution

solutions

source space 𝑉1



Solvers for Linear Systems

Solving linear systems of equations

 Baseline: Gaussian elimination
O(n3) operations for nn matrices

 We can do better, in particular for special cases:

 Band matrices:
constant bandwidth

 Sparse matrices:
constant number of non-zero
entries per row

– Store only non-zero entries



Solvers for Linear Systems

Algorithms: linear systems of n equations

 Band matrices, O(1) bandwidth:
 Modified O(n) elimination algorithm.

 Iterative Gauss-Seidel solver
 converges for diagonally dominant matrices

 Typically: O(n) iterations, each costs O(n) for a sparse matrix.

 Conjugate Gradient solver
 Only symmetric, positive definite matrices

 Guaranteed: O(n) iterations

 Typically good solution after O(  n) iterations.

See: J. R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing 
Pain, 1994.


